Tag: inquiry maths

Math in the #PYP: Can you really “kill 2 birds” with one planner?

Math in the #PYP: Can you really “kill 2 birds” with one planner?

I’ve been doing a little light reading and exploring the new PYP: From principles into practice digital resource in the PYP resource center. This led me to nose around the Programme standards and practices documentation to see if anything had dramatically changed. I was surprised at how much it had changed in wording, not just swapping section letters for numbers but how some of the ideas have shifted to articulate the “enhancement” of the programme.  Here’s something that stood out to me:

(2014)Standard C3: Teaching and learning

Teaching and learning reflects IB philosophy.

1. Teaching and learning aligns with the requirements of the programme(s). PYP requirements

a. The school ensures that students experience coherence in their learning supported by the five essential elements of the programme regardless of which teacher has responsibility for them at any point in time.

 

(2018) Learning (04)  Standard: Coherent curriculum (0401)

Learning in IB World Schools is based on a coherent curriculum.

Practices: The school plans and implements a coherent curriculum that organizes learning and teaching within and across the years of its IB programme(s). (0401-01)

This led me to question and scan through the standards and practices documentation to examine how “stand alones” are being viewed in the enhancements. Since I wonder how they fit in with this idea of “coherency”, (which was not defined in the glossary of terms, oddly enough) they could be problematic as they might conflict with transdisciplinary learning.

And why do I think this?-because I’ve been struggling with trying to “cover” the math standalone along with the transdisciplinary maths. At schools in which TD (Transdisciplinary) Maths and SA (Stand Alone) Maths are taught simultaneously during a unit of inquiry,  I’m sure many of you PYP educators share my pain and are trying to “fit” it all in while not sacrificing the main UOI.

Oh, I can hear you–

Judy, but TD Maths is supposed to be embedded naturally into our UOIs. We shouldn’t know where one subject begins and where ends in transdisciplinary learning. 

But math is not a noun, it’s really a verb. And unless you write units of inquiry that create the context to do mathematics organically, it hardly lends itself to transdisciplinary learning. Perhaps it is for this reason why our school has created a whole Math Programme of Inquiry (POI) around the strands of Number and Pattern & Function. Christopher Frost wrote a brilliant blog post that articulated his school’s challenge with the PYP planning puzzle: mathematics so I can appreciate why our school has attempted to create a Math POI. However, because we only developed it within those strands, in my opinion, this has further complicated the challenge of integrating math into our units of inquiry.

For example, our last Math UOI  in 1st Grade was:

Patterns and sequences occur in everyday situations.
Patterns can be found in numbers.
-Types of number patterns
-Patterns can be created and extended.

This was our conceptual rubric for this Unit of Inquiry:

Screen Shot 2018-10-28 at 9.52.48 AM

The lines of inquiry came from the learning outcomes (which we refer to as “learning territories” at our school) from the IB’s Math Scope and Sequence, under “constructing meaning” in Phase 2 in the Pattern & Function strand.  But then this stand-alone wasn’t enough, and we had to then create a TD math focus to go with our How We Express Ourselves unit:

Language can communicate a message and build relationships.
-Different forms of media;
-The way we choose to communicate;
-How we interpret and respond.

So there we were, as a team, staring at this central idea and wondering what would be a natural match, conceptually, with this unit. We could definitely DO data handling as a component of this unit, creating graphs and charts that reflect the 2nd and 3rd lines of inquiry. However, since we were stuck on the CONCEPT (rather than the skills), we ended up focusing on the word LANGUAGE and eventually wrote another conceptual rubric based upon the conceptual understanding (from the Math Scope and Sequence): Numbers are a Naming System (Phase 1, Number), using the learning phases from the Junior Assessment of Mathematics from New Zealand–a standardized assessment that we use across all grade levels.

Screen Shot 2018-10-28 at 10.08.44 AM

Although we felt that we “covered” the learning outcomes or “territories”, we definitely felt dissatisfied with how we approached planning and learning these of concepts. Recently, I read the Hechinger Report, OPINION: How one city got math right, something stuck out at me and made me reflect deeply on our process and purpose of math in the PYP.

The top countries in education have shown that going deeper and having more rigor in middle school are the keys to later success in advanced math. Compared to high-performing countries, American math curricula are a “mile wide and and inch deep.” Students who want to go far in mathematics need a deeper, more rigorous treatment of mathematics…..

Going for depth of understanding in the foundational years, and accelerating only when students have solid backgrounds and have identified their goals, has paid off. This is progress we can’t risk undoing by returning to the failed practices of tracking and early acceleration.

Here are the questions that surfaced after reading that article and reflecting on our context:

  1. Is having TD math and SA math taught during the same unit of inquiry really “best practice”? Are we creating a “mile wide and an inch deep”?
  2. Is focusing on conceptual understandings vs. skills really the best approach to transdisciplanary learning in math?
  3. Do broad conceptual understandings help or hinder the assessment of a math UOI?

Now I’d like to add one more question after reading the Standards and Practices……

4. How can we create coherency, not only by “covering” all the learning expectations for our grade, but create authentic math connections for transdisciplinary learning?

 

Where we are in place and time with Math in How the World Works.

Our new unit began this week. Originally our upcoming Number SA Central Idea was going to be:

Making connections between our experiences with number can help us to develop number sense.

As we were beginning to develop lines of inquiry for our “learning territories”, we decided that this central idea seemed hard to approach and written for the teacher, rather than the learner. (In my opinion, if students find Central Ideas to be goobly-gook, then how on Earth can they make meaningful connections?) We went back to the IB’s Math Scope and Sequence to provide clarity and direction to developing skills.

Will mathematics inform this unit? Do aspects of the transdisciplinary theme initially stand out as being mathematics related? Will mathematical knowledge, concepts and skills be needed to understand the central idea? Will mathematical knowledge, concepts and skills be needed to develop the lines of inquiry within the unit?

When we looked at those questions, our team nodded their heads in agreement–Yes, of course this is a TD Math unit–it’s a scientific thinking unit, for heaven’s sake–the best kind to connect with!

Thus we rewrote the Central Idea and created our lines of inquiry based upon what they might be “doing” with number, recognizing that other math strands might be employed in our How The World Works unit (Central idea: Understanding sound and light can transform experience), thus combining the “Stand Alone” with our “TD Math“. Here is the unit we created:

We collect information and make connections between our experience and numbers.
use number words and numerals to represent real-life quantities.
-subtitize in real-life situations.
understand that information about themselves and their surrounding can be collected and recorded
-understand the concept of chance in daily events.

To be honest, I’m not sure if this is the best approach either and I spent a good amount of time cross-referencing pacing calendars and scope and sequences from other national curricula. However, this not only would help us to “kill 2 birds” with one planner, but it also helps us lean towards creating math units that develop the context of discovering vs. “being told” when and how to do math. This is true inquiry, in my mind, whether it is through a SA or a TD Math lens of learning. But when you are trying to squeeze in teaching two maths (TD and SA) during a unit then there is the challenge of approaching problem solving as a rote skill instead of having enough time for students to make decisions based on their math understanding. Documenting and analyzing those student decisions require time in order to evaluate appropriately what our next steps might be and in order to guide them towards a deeper understanding and more flexible thinking. So stay tuned.

If any other schools have been fiddling around with integrating math into units, I’d love to hear some of your stories–indeed anyone reading this blog would!! So please share your approaches in the comments below.  It benefits all of us trying to put “Principles into Practice”.

 

 

#BuildMathMinds18: How Slow Thinking, Playing and Challenge Create Mathematicians

#BuildMathMinds18: How Slow Thinking, Playing and Challenge Create Mathematicians

In the Build Math Minds Summit, Dan Finkel elaborated on this notion that “what books are to reading, is what play is to math.” And as he said this, my ears perked up, I leaned in and listened intently because this is all I’ve been thinking about for the last week as I begin to plan for next year’s inquiry maths with play as a pedagogical stance. He articulately beautifully how math thinking comes from asking questions, solving problems, playing and exploring.

So as I marinated in his words and ideas, I began binge learning all over again. Glutton for punishment?–I guess I am. But they say that when you teach others, you learn twice. So I want to share my takeaways from some of the presenters, Dan Finkel included, for the Math Minds Summit (which you should go watch right now if you read this post before August 6th, 2018). And because I know that the brain is more switched on when you present ideas as questions, my gleanings are represented in that way for this blog.

I hope it inspires you…..

During unstructured play, what kinds of questions can provoke analytical and divergent thinking?

How many? (number)

What kind? (classification)

How big? (measurement)

What if? (creativity and logic)

What makes games good to develop mathematical thinking?

  1. Anything with Dice
  2. 5 in a row
  3. Number sense cards (that show alternate variations of number patterns)
  4. Checkers
  5. Nim
  6. Anything with cards
  7. Anything that you can advance pieces on a board
  8. Games that involve making choices so that children develop strategy and thinking.

Provocations= Puzzles and Challenges

These can be concrete opportunities to explore estimation and making conjectures, but the heart of a mathematical provocation is that it must be intriguing to get the students curious and motivated to solve the problem. Consider if the provocation is going to…

  1. Allow all students to show their thinking and understanding in interesting ways.
  2. Invite conversation and collaboration among peers.
  3. Provide opportunities to assess what students know and can do mathematically.
  4. Have an ROI (return of investment) of time and resources–all the set up is worth it because of the cognitive demand and depth of learning that is going to come from this provocation.

(These 4 criteria were inspired from Jon Orr  and his work with starting a Math Fight)

These are some examples that I think were great examples:

“About” how many ketchup packets do you think can fit inside these containers?

estimate

Prompts that incite a variety of answers:

mathbefore bed

What language encourage matheI remember thinking that students should learn the way I taught; they should adjust to me. I could not have been more wrong. A great teacher adjust to the learner, not the other way around (3).pngmatical dispositions?

  • Demonstrate that wrong conjectures can be the jumping off point for refining our ideas with counterexamples which enrich our thinking and deepen our conceptual understandings.
  • Using descriptive and numerical language to highlight the math concepts  (He gave the simple example of saying “Get your 2 gloves” vs. “Get your gloves”.
  • Use language that shows that we, as adults, aren’t afraid of making mistakes, so they feel safe also.
  • Do NOT use words that suggest that you have to be “smart” or “fast” to do the math.
  • Likewise, do NOT give praise for being “fast” or “smart”.
  • Ask questions that provide challenge and make students take a position (conjectures):
    • Do you agree or disagree with this idea?
    • Why?
    • How do you know?
    • Say more about that?
    • In your own words, could you explain….?
    • Would you rather….. or would you rather……?
    • How might you represent your thinking?

What routines or thinking systems encourage mathematical conversations and develop conceptual understandings?

(Click to learn more on the links)

  • EVERYTHING WE KNOW ABOUT THIS routine: Present a problem or puzzle, asking them to….Write down, tell a neighbor, tell me EVERYTHING you know about this.
  • Number Talks: a simple problem shown that students try to solve mentally in a variety of ways.
  • Number String: a specifically structured string of number problems in which the numbers get progressively harder.
  • Counting Collections: The routine speaks for itself- students count set collections of objects. This develops a variety of counting strategies.
  • Claim, Support, Question: providing a claim (conjecture) that students have to provide evidence to support their claim. In order to deepen the conjecture, students can use counterexamples or ask questions that help develop a better math argument.
  • Two Truths and a Lie: students are presented with a math problem or graphic.  Students are instructed to create two truths and one lie about the math.  Then, students share their “truths” and “lie” and have other students decide which are the truths and which is the lie.
  • Which One Doesn’t Belong?: These are visual puzzles that have multiple answers. Click on the link to see a plethora of them. There’s also a book written by the same title.

Next week, when our 1st graders start piling into the classroom, I have an arsenal of ideas that I’ve gotten from this summit. (And it’s not even over!!) I really would invite you to check it out. I know, beyond a doubt, that our students are going to fall in love with math at an early age because they will engage in play, feel challenged at their level and construct meaning on their own timeline. I wish the joy of math for all children (and adults) out there. Don’t you?

 

#InquiryMaths: Planning for Play as a Stance for Math in the #PYP ?

#InquiryMaths: Planning for Play as a Stance for Math in the #PYP ?

I’ve been binge learning through the online conference on The Pedagogy of Play. It’s been really inspiring for me. Last year, I felt like I was moving away from play-based learning and into more formally academic structures when I began teaching first grade. This has been a challenge for me because I miss the discoveries (theirs and mine!) and creativity that are natural by-products of a play-based approach. So as I embark on this school year, I have two questions that I am holding in my mind: How do I make math more fun and authentic? and How do I provide rich open-ended tasks that allow for multiple approaches with low threshold, high ceiling tasks?

These questions come from this quote from Jo Boaler, a math educator hero of mine.

Numerous research studies (Silver, 1994) have shown that when students are given opportunities to pose mathematics problems, to consider a situation and think of a mathematics question to ask of it—which is the essence of real mathematics—they become more deeply engaged and perform at higher levels.
― Jo BoalerMathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching

loris malaguzziAs I reflect on that research, I believe the answer to my questions is to play. Not just because it develops curiosity and self-expression, but it cultivates self-motivation and an appreciation for the pleasant surprises that our mistakes bring us in our learning process. Moreover, from Boaler’s academic point of view, “they become more deeply engaged and perform at higher levels”. Um…so why on Earth wouldn’t we connect play and math?

What is play?  Play is the ultimate What If question in my mind because it allows us to explore with possibilities. Most Primary Years Programme (PYP) Early Years educators feel that the word “play” is synonymous with the word “inquiry”. As teachers, we can be intentional about marrying the joy of learning through play with our learning outcomes. I don’t think we have to suck the fun out of everything to make it “learning”; in fact, I think it has to be injected back into the process, especially when I consider that real * (think Albert Einstein and Euclid and Leonardo Pisano aka Fibonacci) mathematicians are exceptionally creative and playful with their ideas. (*Actually, I think ALL of us are REAL mathematicians, but not all of us embrace and delight in this aspect of ourselves).

So then if I approach inquiry maths through the lens of play, I need to consider ….

What tools can we use for play?

  • Loose parts?
  • Technology?
  • Each other?
  • Math resources (traditional, like geometric shapes, Unifix cubes, hundreds chart etc.?)
  • Math resources (non-traditional materials that allow students to create. ie: a bridge)

What mathematical ideas can be developed and deepened through play?

I actually believe that most of the time, when we are authentically engaging in math decisions, we are not doing “number” and then “measurement” and then “data handling”–it’s not that discrete in real life and often time these strands are happening simultaneously and overlapping. Play expresses this transdisciplinary nature.

What language can I use to invite “playfulness” with math?

I think our teacher talk is actually a critical component of shaping our mathematical identities. Also, the enthusiasm I communicate, either through my speech or through non-verbal cues is something that I want to be mindful of. My favorite book that addresses this is still Mathematical Mindsets  but I also love the simplicity of Peter Johnson’s ideas on language and I recently read In Other Words: Phrases for Growth Mindset: A Teacher’s Guide to Empowering Students through Effective Praise and Feedback which had a lot of gems in there that can be applied to developing our language around math learning.  I’ve been ruminating over how I can embed more sophisticated math language in our classroom vernacular, especially with our English Language Learners (ELLs). I really want students to talk like mathematicians, explaining their algorithms and debating approaches to problem-solving in a way that is light and spirited as if we are having a cool conversation. I know that deepening my ability to express the “fun of math” is going to be an area of growth for me because I have been brainwashed into thinking (like many of us were) that math is serious and hard. I STILL have to unlearn this when working with older children.

How can I document their learning decisions so I can create more opportunities to engage, process and reinforce key concepts while also expanding their cognitive boundaries? Right now I am reading A Guide to Documenting Learning: Making Thinking Visible, Meaningful, Shareable, and Amplified by Silvia Rosenthal Tolisano and Janet A. Hale in the hopes of deepening my knowledge and finding answers to this complex question. I also find that this Math Mindsets Teaching Guide from YouCubed will be incredibly helpful in my professional learning journey.


So as I think about our first unit of inquiry in our stand-alone Programme of Inquiry (POI), I find this a wonderful opportunity to develop play as a stance to inquiry maths. Here’s the unit:

Central Idea: Exploring patterns and solving problems empowers us to think mathematically

An inquiry into how mathematicians . . .

1.Construct meaning based on their previous experiences and understandings
Make meaning from what they understand

2. Transfer meaning to connect and deepen their knowledge and understanding
Make connections to deepen their knowledge and understanding

3. Apply their understanding of mathematical concepts as well as mathematical skills and knowledge to real life situations
Use what they understand to solve problems

CONCEPTS – Connection Reflection
ATTITUDES – Independence Confidence
LEARNER PROFILE: Knowledgeable Communicator

 

I am considering what provocations would allow the students to “to show what they know”–which is really the essence of our first unit.

Before I do any provocations though, I have to survey and collect data. Nothing fancy, but I need to know their answers to the following questions and then analyze their answers to make informed choices on how we can create invitations to play in mathematics. Also, it helps me to assess the Key Concept of ReflectionaflThese are the open-ended statements that can help me understand where the students are now:

  1. Math is……
  2. Math makes me feel…..
  3. Math is fun when….
  4. I do math by…
  5. Math is everywhere (agree or disagree) because…..

Here is some of the brainstorming that I am considering for “provocations” to begin to shape our awareness in our daily lives and help create an authentic invitation to play. (By the way, this is my first thinking–I haven’t collaborated or researched with peers–so this is raw and rough ideas, happening in real time on this blog):

  • The ole’ suitcase: Place inside a seemingly odd collection of items from everyday life  that represent mathematical strands* like a pair of pants (measurement), a bottle of water (shape and space), a license plate (number and pattern), a bag of candy (data handling), a clock (number), a map (shape and space), some rocks or shells (data handling/number and pattern), some tape (measurement). Then have students pair up, select an item, and discuss the guiding questions. Record their thinking onto SeeSaw.

(*May I just say that I know that selecting those items and arbitrarily labeling them in particular strands is a bit comical because I know that the students will come up with more interesting ideas and connections than I ever will. But this is just an “accounting task” to ensure that, in my adult mind, I’ve covered all possible topics.)

The Guiding Question(s): If math is everywhere, then how are these things related to math? What math might someone have used to create these things?–What ideas were people thinking about when they made these items? (Key Concepts: Connection, Perspective)

The next day, we would need to share those survey results with the class so that students can start developing their identities as mathematicians. We’d probably come up with a display and have the students do a gallery walk and discuss what they noticed. Then I would set out these items and ask a follow-up question: If you were to sort these items, which things would you put together and why? (This is just to further identify the connections they’ve made)

Up until this point, I am just trying to kill two birds with one stone: plant a seed that math can be everywhere and collect data about their thinking. But now I have set up the opportunity to have purposeful math discussions through invitations to play.  Of course, the types of tools and learning situations that can be engaged through play will obviously vary based on the survey and the data collected from the provocation.

But I think we could set up a variety of “challenges” or authentic contexts that can be steeped in play-based situations.

Example: The Challenge: Your mission should you accept it……

  • Fill the cup: using a straw and this bowl of water, how might we fill the cup to the line?

Possible Tools: drinking straw, spoon, soap pump, timer, popsickle sticks, paper, pencils

Because I didn’t ask for a particular tool to be used, then this becomes a more open-ended task, allowing more choice and helps me to get data on the student’s thinking. This amps up the play quotient and math possibilities.

Possible teacher questions: What if you used a spoon (or straw, or soap dispenser, etc..), how might this change your results? How do you know that you have completed this challenge? How might you do this challenge faster? How do you think we could record your success?

This forward planning for a provocation and “play-storm” is really just the beginning. In less than 2 weeks, the doors will officially open and learning will officially commence for the 2018-2019. I couldn’t be more eager to approach this year’s learning with a dedication to play, taking their ideas and imaginings and connecting them to math learning that matters to them is going to be important and fun work. As I consider the possibilities with play, it gets me really excited. I hope, no matter what age we teach, educators see the value and need for play in developing mathematical thinking.

 

#InquiryMaths: Mathematical Thinking meets #Social Leadership using #Seesaw

#InquiryMaths: Mathematical Thinking meets #Social Leadership using #Seesaw

Social media is viewed as “entertainment” by many. However, many people use social media accounts like Facebook and Twitter to find their news -2/3rd to be exact. As I ponder this, I have to recognize what a powerful influence this is over our culture.  Social media as entertainment may be what IS, however, it doesn’t have to be what WILL BE for our children’s future. I believe we can change that. I think we can educate students to view it as an avenue to have true intellectual discourse and human connection. In Social LEADia, Jennifer Casa-Todd suggests that digital citizenship should evolve into using the internet and social media to improve the lives, well-being, and circumstances of others and I don’t think we have to wait until students are old enough to have social media accounts to begin to develop this mindset. So we have begun to test out this idea during our current unit of inquiry:

Language communicates messages and builds relationships

  • Different forms of media (form)
  • The way we choose to communicate will affect relationships. (reflection)
  • How we can interpret and respond (causation)

During this unit, we have been using Seesaw as our social media ‘training wheels’ to explore what it means to consume content and respond to it by examining how we share our mathematical ideas through posts.  Our team had realized that students were posting different ideas of problem-solving and we wanted them to examine alternatives to their thinking. We could show the students these clips as a whole class and do number talks around them but we felt that allowing students the choice to select the ideas would help them gain independence.

So we started by explaining how you could find these great mathematical ideas in their journals.

Since we wanted the students to construct meaning, we didn’t tell them what they should post as comments, we just explained how you could show your response to listening to them. aidan'sThose first comments became the fodder for discussion–Were “hearts” and emojis really helpful for growing ourselves as learners? And they also talked about how we presented our learning online. One student expressed a chronic sentiment: “Sometimes I can’t hear them speaking. I think people should listen to themselves before they post. ” As a teacher, I loved this observation which really has improved their presentation skills overall. As a result, students have naturally begun to articulate how they really wanted to engage better online.

Through the Activities feature, students can peruse and select math ideas that they would like to view instead of just going to their friends’ journals. img_7460This has also helped to spread mathematical thinking around. I can see students nudge one another and say “Hey did you so-and-so’s idea? Go check it out!’

Aside from developing “friendly feedback and helpful comments“, we have been inquiring into how we can interpret and respond to these comments. My partner created a few “starters” for them to get them thinking about the need to be polite whether you agree or disagree with the person:

  • Thanks. I hadn’t thought of that.
  • Wow, that made me think that I can now…
  • Thanks but I disagree because….

Although we scatter these sentence starters around, it has been lovely to see them create their own messages, showing us that they have transferred the meaning and personalized it. img_7416Now we are at the stage in which we are encouraging and educating parents about how to make helpful comments and responses. It’s a bit hard to get them to “unlearn” some of the social media habits that we have as adults, so we get parent comments like “Love you boo-boo. Great work!” I hope that the students challenge their parents and ask them what they connected to in their post.

Since this is my first attempt at teaching younger students these skills, I am excited at how we can improve their communication skills through the use social media next time. However, I feel immensely proud of how serious they have taken their learning and their need to connect with their peer’s ideas. I feel confident that if we approach social media from this perspective, we can indeed shape and transform what social media can be like in the future.

I’m wondering how others have used Seesaw to develop these skills and what strategies they found successful. Please share in the comments below so we can all learn from each other. (:

 

Verified by MonsterInsights
Verified by MonsterInsights