Tag: math inquiry

“The Standards” Aren’t a Race: The Importance of Assessment in Getting to a Finish Line

“The Standards” Aren’t a Race: The Importance of Assessment in Getting to a Finish Line

I didn’t enjoy Math until I was in high school. Trigonometry was the first time that I remember gazing up in amazement and wonder. Sin and Cosine. Identities, theorems, and proofs. Parabolas and Ellipses.  It suddenly became interesting even if it was hard. I loved using the nifty functions on the calculator as well. But why did it take me so long to appreciate the beauty of math? I wonder where and who I might be if I had learned less about standard algorithms and more about number concepts and reasoning at an earlier age.

I don’t see how it’s doing society any good to have its members walking around with vague memories of algebraic formulas and geometric diagrams, and clear memories of hating them. It might do some good, though, to show them something beautiful and give them an opportunity to enjoy being creative, flexible, open-minded thinkers— the kind of thing a real mathematical education might provide. ……. to create a profound simple beauty out of nothing, and change myself in the process. Isn’t that what art is all about?

From A Mathematician’s Lament by Paul Lockart-

For me, if I can invoke wonder and surprise, then the beauty of communicating in numbers becomes self-evident and a student’s heart awakens to the joy of an interesting problem or question. Creating this experience is a passion of mine. After spending a week with Lana Fleiszig, it’s hard NOT to be more inspired to create a love of math in our classroom. Her enthusiasm is contagious, and her advice about inquiry is clear–know your destination, but don’t worry about how you get there. Don’t be afraid to throw students into the “pit of learning” and allow them the experience of confusion. As I have come to appreciate her point of view, I recognize that when students climb out of their “pit”, that’s where beauty lies.

So here we are, in another stand-alone unit, which might be considered the “place value” unit, which is not typically the most exciting math concept. It’s a ho-hum inquiry into base-10 blocks in how we express large numbers and use it to develop strategies for addition and subtraction. But what if we threw them into the learning pit and took our time to really develop number sense. How might we approach our planning and execution of the unit if this wasn’t a race to tick off a curriculum math standard?

The Standalone

Let me break down the basics of the unit for you:

Central Idea: Numbers tell us How Many and How Much

  • The amount of a number determines its position in a numeral.
  • How we know when to regroup.
  • How grouping numbers into parts can help us find solutions

(All lines of inquiry and Central Idea from conceptual understanding in the PYP Math scope and sequence and subsequent learning outcomes in  Phase 2)

Knowledge and Understandings, aka, “The Standards”

I’m going to cross-reference 2 commonly used national curriculum, Australian and American Common Core, because our team needed clarity into exactly WHERE our destination needs to be in this unit of inquiry:

Australian:

Count collections to 100 by partitioning numbers using place value (ACMNA014 – Scootle )
  • understanding partitioning of numbers and the importance of grouping in tens
  • understanding two-digit numbers as comprised of tens and ones/units
Represent and solve simple addition and subtraction problems using a range of strategies including counting onpartitioning and rearranging parts (ACMNA015 – Scootle )
  • developing a range of mental strategies for addition and subtraction problems

The Common Core:

Understand place value.

CCSS.MATH.CONTENT.1.NBT.B.2
Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:
CCSS.MATH.CONTENT.1.NBT.B.2.A
10 can be thought of as a bundle of ten ones — called a “ten.”
CCSS.MATH.CONTENT.1.NBT.B.2.B
The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
CCSS.MATH.CONTENT.1.NBT.B.2.C
The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
CCSS.MATH.CONTENT.1.NBT.B.3
Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

Use place value understanding and properties of operations to add and subtract.

CCSS.MATH.CONTENT.1.NBT.C.4
Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.
CCSS.MATH.CONTENT.1.NBT.C.5
Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.
CCSS.MATH.CONTENT.1.NBT.C.6
Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

 

Planning the Unit

If you “peel” back these standards, what (math) concepts and skills seem evident to you? What are the “big ideas” that students need to walk away with?

  • Collection or Group
  • Place Value
  • Position
  • Partitioning: composition and decomposition
  • Reasoning

Since I teach 1st grade, we would be exploring the key concept of Form and Function, mainly, throughout this unit. But we would also look at the Connection between using groups of 10s and developing mental strategies for problem-solving in which we can Change addends/subtrahends around to make friendly numbers. Students would also need to consider the Perspective of other mathematicians in our class when it came to solving a problem in different ways.

With this in mind, we looked at these standards and identified 5 main guiding questions  that will be the basis of our inquiry and the purpose of every provocation that we create:

  1. How does the place value system work?
  2. How does the position of a digit in a number affect its value?
  3. In what way can numbers be composed and decomposed?
  4. In what ways can items be grouped to make exchanges?
  5. How can we use place value patterns for computation?

Provocations to Explore and Reveal Math Thinking

Once we had clarity around the big ideas in our unit and created our guiding questions, it became easy to start planning provocations.  Using a guide like this one, Task Identification Tool_Identifying High-Quality Tasks (1),  from the work of John J. SanGiovanni in his book series on how to Mine the Gap for Mathematical Understanding really helps teams like ours to create a high ceiling, low-threshold activity for inquiry-based maths.

We knew from a previous provocation, (14 or 41–the position of a numeral doesn’t matter. Agree or Disagree. Prove it.), that students still were developing an understanding of what a written number means. We needed to further explore it. So we began with place value.

Guiding Question #1: How does the place value system work?

We decided to launch the unit with an emphasis on language since we noticed that a lot of students were mixing up their teen numbers when explaining their ideas. So we started with Teen vs. Ty, is there a pattern or a rule about these numbers?

  1. Sixteen and Sixty, What do you notice about these numbers?
  2. Seventeen and Seventy? How are they different, how are they the same?
  3. What do you think “teen” means? What do you think “ty” means?

We then began exploring expanded notation with showing the tens in a number. Students were introduced to how expanded notation is related to the place value mat, which can be represented as:

43=40 + 3 or 4 tens and 3 ones. 

The students played a partner game called “guess my number” in which they had to express a number in tens and ones and have the student create it with base-10 blocks and numerals.  They did really well. We thought we were smashing it and ready to move on to using it for addition and subtraction.

But how could we be sure they “got it”? ……….

Assessment

We decided to assess if they got the idea of base-ten and how we use the place value mat as a structure to show the parts of numbers. We used this SeeSaw prompt to assess if they truly understood:

How we know when to regroup – Using a collection of objects – how do you find out how many items you have?

We decided to use unifix cubes because the “tens” weren’t prepackaged, sort of speaking, as they are with base-10 blocks. In this assessment, we had them grab a handful of unifix cubes and organize them on the place value mat, explaining to us what number they thought they had. What we observed stopped us dead in our tracks and ask what misconceptions do we see? Here is an example of a common surprising result:

As you can see, this student didn’t connect the quantity he had in their collection at all. These students would need some additional support with connecting the amount of a number to how it is written and presented.  We felt we needed to go deeper into how we “bundle” tens to count things efficiently. In fact, we felt we needed to do an inquiry into 10, so they could appreciate how this is the basis of base-10.

Back to the Starting Line?

We are in Week 4 of this unit, and we are going back to the starting line. Based on our observations, it seems that the students don’t quite have the idea of ten yet, and, we have a group of students who just need to work on skip counting by tens. It would be easy to move ahead and push through so we can tick off our standards, but we’d rather spend more time immersed in context and play that develops their number sense than to push them along. We understand our future impact. Moving ahead hoping that they “get it” later on would seem like a disservice, as they’d lose the interest and motivation to do more complicated mathematics and have half-baked conceptual understandings.

Since have a free flow of student groups, in which children choose what Must Dos and May Dos they want to participate in. However, ideally, we have 3 primary activities that we want the students to work through in small teacher groups throughout our math learning time:

The Big Idea of our teacher-directed groups: 10 can be thought of as a bundle of ten ones — called a “ten.”

  • The Base-10 Bank

Students will pick a numeral and build numbers using “ones” which they can exchange for tens. As partners, one person will be the “bank”, which the other partner can trade in their ones for 10. No place value mats, only the base-10 blocks.

  • Race to 100

Using dice, a hundred’s chart and a place value mat, students have to roll and add their way to 100. As they roll their way up to 100, they have to build the new number, using the place value mat to show how the quantity that is ever-increasing, as well as giving a context for exchanging units.

Making Bundles: In this activity, students are given a collection of objects and they have to bundle them up into tens, so that they have an appreciation of the value of a number.

Additional Games and activities that they can do independently, when not working with a teacher. The May-Dos:

Traffic light (Partner Game): One partner comes up with a “mystery” number and, using a place value mat, has to try to guess what digit is in what position.

Big 4 (Independent or Small Group): In this game, we use a hundred chart to try to get to the biggest number in just 4 moves. A child rolls a die and moves that many spaces, moving in any direction, forwards, backward, diagonally, upwards or downwards. This game gives them practice at thinking about number patterns as they move around the hundreds chart.

Ready or Not?

After all that exploration, we hope that these games will prepare them for the following formative assessment:

4+4 = 44. Agree or Disagree? Show how you know. (This actually is inspired by a misconception that we observed) Students can use 10-frames, the Hundreds Chart, Math Racks or Base-10 blocks to provide evidence of their reasoning. (We determined that these sorts of materials would help them to “see” patterns and make connections, rather than loose parts alone)

If they can articulate and demonstrate a firm understanding of place value in this provocation, then we feel that we can move into applying our understanding of using the base-10 for addition and subtraction, examining the guiding question:

How can we use place value patterns for computation?

This is the ultimate reason why place value is such a critical understanding after all. However, it is the journey into number sense that makes this a beautiful experience. We are not quick to move them onto pencil and paper. We want them to experience numbers and segue them into contextual situations.

The Summative

We are still in process with determining the actual prompt, but we feel that we need to give them choices with the task. Choosing a task that shows how they apply grouping strategies to solve addition and subtraction problems will ultimately be our goal.

For our low-level readers, we will give them an oral word problem and then hand them a collection of objects that need to be counted. We want them to observe if they create groups of tens to determine the number. No place value mats offered, but they can request one. For our stronger readers, we will give them a word problem, and, again, offer them concrete materials, but other tools to solve the problem are upon request.

At the end of this task, we can identify the skills and understandings they have acquired. Although we have “mapped out” where we think this unit will go, we can be flexible and stop to address misconceptions along the way. Will they arrive and “meet the standard”? That is entirely up to us, and how effectively we observe, challenge and question our students’ thinking as they playfully and joyfully experience numbers. At the end of the day, that goal–to appreciate and be fascinated with numbers--that is the true destination of math inquiry.

 

Into the “Pit” or upon the “Clouds”: Kensho and Satori Moments in the Development of Number Concept

Into the “Pit” or upon the “Clouds”: Kensho and Satori Moments in the Development of Number Concept

It’s Sunday morning and as I soap up greasy dishes, I hear Susan Engel say on the Heinemann Podcast: 

One of the things that I think that our schools have unwittingly done is ignored all the processes that kids use at home and try to replace those with a set of formal procedures that aren’t always as effective…. But it’s a shame because while we are busy trying to sort of force these somewhat formal kinds of learning beacause we think they are more “efficent” or “high powered”, we waste a lot of the natural learning skills that students have. And often a lot of the natural teaching skills that grown-ups have.

Huh, I think I know what she is talking about. Whether we are teaching a genre or the scientific process, teachers are constantly “telling” kids what to pay attention to and to think about. When I start examining my current practice and reflecting on Who I am as a teacher, I have come to see my role as a provocateur and coach. I am always considering who is REALLY doing the learning in our classrooms?–is it me, or is it the students?

egg
I think of this quote often, reminding myself that if I  tell students, then I’m “breaking their egg” and killed the opportunity for their learning.

So I am constantly asking myself that question because I know that “the person who does the work, does the learning“. But when I say “work”, I mean thinking, and there are so many of these micro-moments in our classroom in which I have a chance to tell kids what to do or to ask them what they think they should do to approach a situation or problem.  Sometimes these moments of learning are Kensho, growth through pain, and other times it is Satori, growth through inspiration. I first encountered this term when I read this blog and Kensho immediately reminded me of our teacher-term, the learning pit. You need determination and resilience to get out of that pit and your reward is Kensho. However, we rarely talk about it’s opposite, Satori. Up until this morning, I didn’t think we had a name for Satori in education. It Kensho is the “learning pit” than Satori must be up in the “clouds”, having a clear view and understanding. But Susan Engel articulated best in the podcast:

There are certain kinds of development that children undergo that are internal and very complex and they don’t happen bit by bit. They happen in what seem to be moments of great transformation of the whole system. ……

At that point, I stopped and turned toward my device. I recognized exactly what she was talking about it. I observed it the other day. My ears perked up some more as I moved closer to listen:

When children are little, their idea of number is very tied up with the appearance of things. So, this is a famous example from Jean-Pierre, a line of 10 pebbles to them is a different quantity than a circle of 10 pebbles, because lines and circles look so different.

The idea that it’s 10, whether it’s a circle or it’s straight, is not accessible to them. At a certain point, virtually every typically developing child, no matter where they’re growing up, acquires this sense that the absolute number of something stays the same no matter what it looks like. Whether it’s a heap or a straight line or a circle, that may sound like a tiny discovery, but it’s the beginning of a whole new way of experiencing the abstract characteristics of the number world.

You can’t teach that through a series of lessons. That’s an internal, qualitative transformation that children go through. Once they’ve gone through that, there are all kinds of specific things that you can teach them about the nature of counting and number and quantity.

Yes! I totally know what she is explaining. I was a witness to it. And perhaps, when you reflect on these Zen philosophical terms as development milestones, you may make a connection to your own classroom learning.

Here’s a snapshot from a recent example in our Grade 1.

Some context

There’s a math coach that I love, Christina Tondevold. She always says that “number sense isn’t taught, it’s caught”.  I’m always thinking to myself, how can I get them to “catch” it. This past week, we did just that using the Visible Thinking Routine, Claim, Support, Question making the claim:

The order of the numbers don’t matter–12 or 21, it’s the same number.

The students took a stand, literally, in the corners next to the words and image for Agree or Disagree, with  I Don’t Know, in the middle. This was great formative data! Then we provided the students with a variety of “math tools” to Support or prove their thinking is correct. They had to “build” the numbers and show us that they were actually different. It was neat how the students who stood in the I Don’t Know and Disagree areas were developing an understanding of what a written number truly “looks like”. We didn’t jump in and save them at any point, but some of them were experiencing Kensho. It was painful because they didn’t know how to organize their tiles or counters or shapes or beads in such a way that they could “see” the difference between the 2 numbers. Meanwhile, the students who chose the unifix cubes were experiencing Satori- and it became very obvious to them that these were different numbers

In our next lesson, we introduced the ten frames as a tool to help them organize their thinking and develop a sense of pattern when it comes to number concept. We did the same two numbers: 12 and 21, and they could work this time with a partner. Oh man, was there a lot of great discussions that came out as they talked about how the numbers looked visually different. The concept of Base 10 started to emerge. As observers, documenting their thinking, it was exciting to see the connections they were making. But the best part was yet to come.

We then brought in the Question part of the thinking routine. We asked them “if the order of 1 and 2 matters to 12 and 21, then what other numbers matter?” They told us:

“13 and 31, 14 and 41, 24 and 42, 46 and 64, 19 and 91, 103 and 310.”

A Hot Mess of Learning

Once unleashed, the kids grouped up and flocked to resources. There was a buzz. Giving students choices allowed the opportunity to choose whether they wanted to stay with smaller numbers or shoot for the BIG numbers even if they had no idea how they might construct a number past 100. They could use any math tool they wanted: cubes, blocks, 10 frames, Base 10 blocks, number lines, counters, peg boards–anything they wanted. Those choices, of itself, really provided some great data.

Here is an example of one of the groups who went with lower numbers:

But the ones who went for the BIG numbers, were the most interesting to watch because they were Kensho. Most of them grabbed unifix cubes, thinking that the same strategy they used before with 12 and 21 would work with 103 and 310. big numbersOh man, they persisted, they tried, but it took a lot of questioning and patience on our part to help guide them out of the pain that their learning was experiencing. Only one group naturally gravitated toward the Base-10 blocks, and when they realized how the units worked, it was a moment of Satori. They moved on from 103 and 310 quickly; they tried other numbers and invented new combinations. And interestingly enough, those groups, at no point, looked over to the ones engaged in the struggle to suggest that they might try another math tool. It was as if they knew that when one is in Kensho, best to leave them alone to make meaning on their own.

And there we were, in the midst of this math inquiry, and we felt like exhausted sherpas but satisfied that we were able to let them choose their own path of learning and made it to their “summit”.

As I consider how the role of the teacher is evolving in education, I think it is recognizing these moments of pain and insight in learning, and guiding them towards the next understanding in their learning progression. I absolutely agree with Susan Engel that when we see children fumbling around, we should be asking if they are within reach, developmentally, to even acquire the knowledge of skill that we are working on. For me, inquiry-based learning is the BEST way in which we can observe, engage assess our learners to truly discover their perceptions and capabilities. It is through capturing the student conversations and ideas that emerge as they give birth to a new understanding that is the most exciting to watch and inspires me in our planning of provocations that lead to their next steps.

How about you?

 

 

The PYP Planner: A Shift in Our Approach to Planning Inquiry (#enhancedPYP )

The PYP Planner: A Shift in Our Approach to Planning Inquiry (#enhancedPYP )

Quick Quiz: What is the first “box” in the PYP planner? Did these things come to mind?:

What is our purpose?   To inquire into the following:

  • Transdisciplinary theme:    
  • Central idea :  

summative assessment task(s):

What are the possible ways of assessing students’ understanding of the central idea? What evidence, including student-initiated actions, will we look for?

Now with the enhancements in the Primary Years Programme (PYP), we can redesign our planner which has to lead to an overhaul of our collaborative planning. If you notice in the Box #1, aside from clarifying our theme and central idea, we would start planning our summative. However, we haven’t done any assessment of student’s prior knowledge, and I often found that determining the summative assessment before we have even launched a unit of inquiry (UOI) has always led to more teacher direction in our units, as if we are nudging and, sometimes pushing the students toward our end goal–The Summative Task. Think about it, when we plan in this way, we are already dictating the terms of what we want the students to Know, Understand, and Do (aka: KUD) before we have even gotten them to SHOW US what they already know, understand and do. A bit presumptive of us, really, eh?

Needless to say, since the reigns are off, and schools get to design PYP planners in the Enhanced PYP, there’s been a shift in how we approach planning. And the new “Box 1” (figuratively) is about planning our provocation FIRST so we can let the students reveal to us what they know and lead the direction of the UOI, rather then us marching them towards the summative. It may seem trivial, but when you consider how AGENCY is the new core of our curriculum, we need to be approaching our units in different ways.

Let me provide a context, looking at our Math Stand Alone:

Patterns and sequences occur in everyday situations.
-Patterns can be found in numbers.
-Types of number patterns
-Patterns can be created and extended.

Key concepts: Connection, Form, Reflection

Related concepts: pattern, sequences, collections/groups

As a team, including our Math Leader of Learning (Olwen Millgate), we sat down and discussed the many different ways that we could plan a provocation around this central idea. At the end of the day, we determined that the most open-ended, the better, so that students could exercise as much creativity and skills as possible. We would just be the “researchers” in the classroom, observing and noting what the students came up with when given the challenge–Create as many patterns using one or more of the materials provided. 

As teacher researchers, we divided up the students so that we could take notes, making sure that all students were given the time and attention to “show what they know” about patterns. Here is the simple observational sheet that was created for this provocation: (Free to use)

We gave the students a variety of math tools to work with:

  1. counters
  2. ten frames
  3. unifix cubes
  4. Cuisenaire Rods
  5. beads
  6. pattern blocks
  7. peg boards
  8. tanagrams
  9. popsickle sticks
  10. white board and markers
  11. stampers and paper
  12. dominos
  13. magnetic letters and boards

As you can see, they had a plethora of options, and the students engaged freely, making their own choices and creations. Some students preferred to work by themselves while other collaborated–another aspect that we noted along with capturing their conversations. Here are just a few of those creations:

This slideshow requires JavaScript.

There was a very loud and animated group at the Unifix cube station–which surprised us all by how excited they got about building “tall patterns”, with a lot of debate about whether they were just snapping cubes together or generating a true pattern. Although to outsiders, it may have felt chaotic, there were fantastic conjectures going on, which we saved a few examples to use for future provocations. (The Guiding Question: Is this a pattern? Why or Why Not?)

Later, our team met to discuss what we observed and we were able to sift through our documentation. We unpacked the provocation, and shared our photos and notes, describing some of the interactions that we had with them. Then we went to our curriculum and examined the phase the students might be achieving at in their conceptual understandings. Our central idea comes from the PYP Maths Scope and Sequence in Phase 1, so we needed to challenge it —is this the phase they are actually in or are we seeing evidence of Phase 2 understanding? We decided to stick with our central idea and lines of inquiry because we felt like we saw and heard evidence that most of our learners were on the tail end of this phase, applying their understanding of pattern.

After this conversation, we went on to determine what our next steps could be. Most of the patterns were ABABAB–do we encourage them to make ABCABCABC or other more sophisticated patterns? At the end of our deliberations, we decided that rushing them might create conceptual gaps so we wanted to stick with their ABABAB, but create a series of opportunities to look at how we could manipulate only 2 variables to generate a variety of patterns. What can we do with only 2 attributes?–This became the guiding question for our upcoming provocations.

So here we are, in Week 2 of this unit and we still haven’t nailed down our summative task. Gasp, right? But, on Friday, after this week’s follow up provocations, we can safely appreciate our learners, where they are and where we can take them during the remaining weeks of the unit. I find that thrilling. We will create our conceptual math rubric, using this generic one as our guide:

math standalone 2

Hopefully, you can see that we are thinking about planning not as boxes but phases in our inquiry. We are using this “tuning in” period to dictate the terms of our how we will ultimately assess students. And we are spending more time researching and planning our provocations so that they can make the children’s thinking visible and expose their understanding of the math concepts. I believe that as this approach to planning evolves, our attitudes toward our students also evolve when we are observing how they are competent and creative when expressing their ideas.

I’m wondering how other schools have begun to consider the impact of planning on agency and how it will look in the Enhanced PYP. The planner has always been a tool for us to shape our collaboration and thinking about how best to meet our students’ needs in the inquiry. I think it will be fun to see how schools begin to shift as they reflect deeply on the importance of it–it’s more than just an exercise in paperwork, it is an artifact of learning.

So what’s your “Box #1”?

Verified by MonsterInsights
Verified by MonsterInsights